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We present the relationship between nonlinear-relaxation-time (NLRT) and quasideterministic ap-
proaches to characterize the decay of an unstable state. The universal character of the NLRT is estab-
lished. The theoretical results are applied to study the dynamical relaxation of the Landau model in one

and n variables and also a laser model.
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I. INTRODUCTION

The study of the transient behavior of nonequilibrium
systems has become an interesting topic in stochastic dy-
namics [1-9], particularly the decay of the unstable
states, in which the fluctuations play a very important
role. Two approaches have essentially been proposed for
the characterization of such unstable states. One is the
so-called first-passage-times (FPT) distribution [3-6], and
the other one is the nonlinear relaxation times (NLRT)
[7-9]. The FPT defines a random variable which is the
time ¢ necessary to cross a given boundary. It is mainly
based on the quasideterministic (QD) approach [1-5].
The NLRT is directly associated with general relaxation
processes of certain quantities, such as the moments of
the relevant stochastic variable, from arbitrary initial
conditions to the corresponding steady states. The QD
approach is a good approximation because it gives a pre-
cise physical picture of the mechanism responsible for the
decay of the unstable state. In fact this approach consid-
ers the fluctuations around the unstable initial state as the
driving mechanism to initiate the relaxation. It is only at
this state that the fluctuations are important, in such a
way that the relaxation of the system, after its stochastic
beginning, is mainly deterministic until it reaches the
steady state. Its essential physical meaning is that the
fluctuations change the initial state of the system in the
neighborhood of the unstable state and then the deter-
ministic motion drives the system out of this state.

On the other hand, some results [10—12] characteriz-
ing the decay of the unstable state obtained by the NLRT
approach are similar to those obtained by using FPT dis-
tributions through the QD approach. However, the rela-
tionship between the NLRT and QD approach, although
intuitively used, has not been discussed in a formal way.
It is the purpose of this paper to show how they are con-
nected. We shall use a method which reduces the
definition of the NLRT to a quadrature. This method
will allow us to study, in a natural way, the different
types of unstable models, whether linear or nonlinear,
which have also been analyzed by other mechanisms
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[7,8,10-12].

In Sec. II we introduce the general definition of an un-
stable state and we analyze the mechanism of the QD ap-
proach. In Sec. III the connection between the NLRT
and QD approach is analyzed and expressions of univer-
sal character of the NLRT for the decay of an unstable
state is established. As an application of the theoretical
results, the Landau and laser models are studied in Sec.
IV. Conclusions are finally given in Sec. V.

II. GENERAL DEFINITION OF AN UNSTABLE
STATE AND QD APPROACH

A. Definition of an unstable state

The characterization of an unstable state is made in
general from the deterministic equation of the square
r=x2 of the relevant variable x,

F=uv(r), 2.1)

where the function v(7) is such that it has two roots. One
root is at r =0, which is the unstable state, then
v'(r)],=¢>0, and the other root is at r =r, which corre-
sponds to the stable state, such that v'(7)] <0.

Therefore the most general expression for the function
v (r) will be

T=rg

vir)= —-r), (2.2)

.
f(r) st

with f(r) a polynomial function different from zero. It
can be written in a general form f(r)=C,+rg(r), where
Co=rg /2ais a constant and g (r) >0 is a polynomial.

The QD approach assumes that the initial condition
ro=r(0) of (2.1) is a stochastic variable. It takes into ac-
count initial fluctuations of the system.

B. The QDT approach

We will now review the main characteristics of the QD
approach. This analysis will give us the results which are
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necessary to make the connection with the NLRT ap-
proach.

First of all let us recall that in the study of transient
situations it is usual to assume a description in terms of a
Langevin-type equation for the relevant variable. In the
case of one variable it reads

x(t)=v(x)+g(x)&(t) , (2.3)

where £(¢) is the stochastic force or noise.

The basic ingredients of the QD approach appear in
the linear approximation of Eq. (2.3) with additive noise,
namely

x=ax +&() . (2.4)

&(¢) is a Gaussian white noise with zero mean and corre-
lation function

(E(E(t"))=2D8(t —1'), (2.5)

where D is the intensity of the noise.
The formal solution of (2.4) can be written such that

x(t)=h(t)e® (2.6)
where
— t—ar ’ '
()= [le= gt . @.7

In Eq. (2.6) h(z) will play the role of a stochastic initial
condition, because for long times, at >>1, it becomes a
Gaussian random variable, A( o )=h, with the first two
moments given by (h)=0 and (h?)=D/a=o0. There-
fore, the probability density of the variable 4 is
2a 232
P h = a‘h s 2.8
(h) Vo e (2.8)
where a’>=1/20.
In the case of n variables (x,x,, . . .,x,) the Langevin
equation for each variable x; is approximated by

X ()=ax;+§&,(¢t), (2.9
where &;(¢) has zero mean value and correlation function

(&:(0E;(1))=2D8,8(t—1"), i,j=1,2,...,n .  (2.10)

Now the formal solution of (2.9) for each x; is the same as
(2.6), but

t '
h,.(t)=f0e‘“'§,.(t')dt' . (2.11)
Again h;(t) plays the role of a stochastic Gaussian
initial condition with variance equal to (h2())
=(h2)=D /a=0. Now the probability for the modulus
h reads

n
P(h)=—22_pn—1,-ah?

T'(n/2) 2.12)

III. UNIVERSAL CHARACTER OF THE NLRT
OF AN UNSTABLE STATE

In this section we will give two general expressions for
the NLRT which will be obtained by a QD approach.
These expressions will allow us to characterize the tran-

sient dynamics of an unstable state, through the evolution
of a statistical moment. Here we define the NLRT asso-
ciated with the average of the variable r. For this quanti-
ty the NLRT is [8,9]

w (r(2))—(r)g
T=f0 Wdt , (3.1)

where we will assume that #(0)=0, which means that the
initial condition is fixed at the unstable state.

The QD approach for the definition (3.1) is obtained
from the deterministic equation (2.1). The essential point
is that the initial condition #(0) is considered now as a
stochastic variable, called 42, which accounts for the ini-
tial fluctuations responsible for dynamical relaxation of
the system towards its steady (deterministic) state charac-
terized by r(¢t = o0 )=rg. Therefore the NLRT (3.1) asso-
ciated with the moment {r) will be given by the average
of a quadrature

L[ _pydr
= Tst <fro=h2(rs‘ ”u(r)) ' G2
By using Eq. (2.2), one can write this NLRT as
=L N L ™
1= (in |25 )+ - <fro=h2g(r)dr> X

This result is the most general expression for the NLRT
of the quantity (7). It exhibits in the first term the
universal logarithmic dependence characteristic of the re-
laxation of an unstable state. The second term accounts
explicitly for the nonlinearities of any model. This can be
better understood if we take into account the explicit ex-
pression of the NLRT corresponding to the linear model,
given by Eq. (A5) of the Appendix. Then
r,
T=T, +C, +ri<f : 2g(r)dr> . (3.4)
st o=
T, and C, are quantities obtained in Appendix A.
On the other side, if the relaxing quantity is the mo-
ment {r'), where /=1,2, ..., and r is the square of the
vector r=(x,...,x,). Then the NLRT will now read

T=—11—<fros;h2(rét— ’)i> : (3.5)

¥ v(r)

Again, taking into account the expression of the NLRT
of the linear model in Eq. (5), we have

T=T,+C,

1 Ts
+;—<f0;hz

st 7

S(r)

r

[1+S8(r)]g(r)+Cy dr) , (3.6)

where S(r) is a polynomial, S(r)=3,Z4(r/ry)*. The
universal logarithmic term is clearly contained in the
linear time scale T, . The last term accounts for the non-
linearities of the model, and the order of the relaxing mo-
ment. We can also note that the time scale (3.4) is a par-
ticular case of (3.6), if we make » =1 and / =1. In this
case S (r) is equal to zero.
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IV. EXAMPLES

As an application of our theoretical results, we will
study two examples. The first one concerns the Landau
model (one and n variables) and the second one is a laser
model.

A. Landau model for one and »n variables

The one-variable Landau model is defined by the deter-
ministic equation X =ax —bx3. For the square modulus
r=x? for one variable or r=x2+ --- +x?2 for n vari-
ables of this model, Eq. (2.1) is then #=2ar—2br?, such
that r, =a /b. In this particular case we have f(r)=C,
and g(r)=0. Therefore the NLRT associated with the
moment (), according to Eq. (3.4), reads

T=T,+C, . 4.1)

We now use result (A7) of the Appendix, and in the limit
of small noise, such that a?r, >>1, we get for this time
scale

1
Tzz{ln(azrst)—\l/(%)}+(9(D), 4.2)
where W(1)=—y—2In2 is the digamma function [13]
and v is the Euler constant [13].

In the case of n variables, the NLRT associated with
the /th moment (r'), according to Eq. (3.6), is given by

T=T, +C,+ = [W(})+7]

2a
2 2 )2
S0 U O U Y el S U Y
a |2 |rg 4 \ry
20-1)
1 h?
et —— | — . 4.3
+ 20—1) |7y ] (4.3)

With the help of (2.12) we can observe that {(h /ry)*) is
a quantity proportional to 1/a¥, for k >2. Therefore it
can be neglected in the limit of small-noise intensity. So
the NLRT associated with the /th moment {r') of the
Landau model in the case of n variables is

n

1
T~ [ln(azrs[)-f- y+W()—V

]—F(O(D) .

(4.4

This final result can be reduced to the expression (4.2), for
I=land n=1.

B. A laser model

Lasers have become the prototype systems to study the
transient dynamics of unstable states. We are interested
now in the study of two different situations of a laser
model. In the first case the laser is under the action of an
external field E,. The second case considers the same
model but in the absence of the external field. Therefore
the results of this last model will be obtained from the
first one, just making E,=0. The first model has been
used to study the detection of very weak optical external
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signals in a laser [10-12,14,15]. The Langevin-type equa-
tion associated with the complex, scaled, and dimension-
less laser field E =E,+iE, in the presence of a complex
external field E, reads [15]

i’E—=—kE+LI+keEe+§(t),

dt
1+-—
F
where a complex Gaussian noise £(¢) has zero mean and
correlation function

(E*(1)E(t"))=2D8(t—1") .

Here I =|E|? is the laser intensity, £(¢) is a white noise
describing the internal fluctuations of intensity D, and k
k,, A, and F are other parameters of the model [15].

Now the linear model ( 4 =0) corresponding to Eq.
(4.5) is written in terms of the components of the electric
field E, namely

4.5)

(4.6)

dE; .
L =aE, (0K Ey, J=1,2

where a =(F — k). The formal solution of Eq. (4.7) is

(4.7)

Ej()=h(1)e™ 4.8)
where
hy)= [ e 4.9)

but now we have that 7;(¢)=8§(¢)+k,E,;. The quantity
h;(z) plays the role of the initial conditions for long times,
as in the one-variable case. Then 4;( o0 )=h; will also be
a random variable with a nonzero mean value {h j)
=k,E; and a variance (h?)—<(h;)*=D/a=c. The
marginal probability corresponding to the modulus
h=(h?+h3)"*is now [12]

P(h)=2a*hIy(bah)e " h*+o) (4.10)

where a’=1/20, b=k,|E,|/a, and I,(z) is the modified
Bessel function of zero order [13]. For b =0, we recover
Eq. (2.12) with n =2,

We remark now that the deterministic equation for the
variable r =I=|E|? is the same for both models because
in the QD approach, the noise and the external field are
included in the variable 4. Equation (5) is now written in
the form

2ar(ry—r)

A
ro {14-77']
Therefore, for this model Cy=ry/2a and g(r)

=ry A /2aF. The expression for the time scale (3.4) asso-
ciated with the moment 7 ) =(I) reads

F= (4.11)

1
2a

F_

T=T,+C, +
L 1 k

A2
1+ F(h Y1, (4.12)

where now ry=I,=Fa/kA and (h?)=1/a’+b>
Then the corresponding NLRT for the laser model, in the
absence of external field ¥ =0 and for small-noise intensi-
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ty, a’ry >>1, reads

F

T~-1 In(a?ry)—W(1)—1+— (+0O(D). (4.13)
2a k

On the other hand, the NLRT associated with the
mean value of the laser intensity, under the action of the
external signal and for small-noise intensity, is [see Eq.
(A9)]

-1 2, . F A4,
T lln(a r =¥ =1+ +Lp

—[E | (b%a®)+y+In(b?*a?)] [+O(D) . (4.14)
For a very weak external field, the term Ab?/F can be
neglected.

V. CONCLUSIONS

We want to remark here that the method we have pro-
posed allows us to characterize the decay of unstable
states by means of the direct application of the QD ap-
proach. This method is simple and shows the universal
character of the NLRT for the decay of an unstable state
which is contained in the logarithmic term and which
comes from the linear term. The nonlinear contribution
is explicitly obtained by an integral in Eqgs. (3.4) and (3.6).

On the other hand, the detection of weak optical sig-
nals in a laser, which has been studied in Refs. [11,12,
and 15], becomes transparent in terms of the method pro-
posed in this paper. This approach can be also used to
study the problem with colored or non-Gaussian noise

(6].
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APPENDIX: THE NLRT OF THE LINEAR MODEL

As in the relaxation of an unstable initial state, the
linear approximation plays a central role. We present
here the explicit calculation for this case.

The linear evolution equation of the deterministic pro-
cess for the variable x is X =ax, and for the square
modulus, r =x2, we have

F=2ar . (A1)

The evolution stops when r(t)=rg, ry being the deter-
ministic steady state of the nonlinear model. This is the
way to avoid the explosion of the linear model for ¢t — .

The solution of this process is clearly
r()=r(0)e*", (A2)

and up to a time ¢;, such that r(t;)=ry and r(0)=r, is
the initial condition of the problem. This time ¢; is given
by

st

ro

" 1

(=5 , (A3)

and it is a random variable because the initial condition is
also a random variable, r,=h2. Therefore the whole pro-
cess 7 (t) can be written explicitly as

rO)=h2%20(t,—t)+r 0t —1,) , (A4)

and 6(¢) is the step function.
According to the definition of the NLRT, Eq. (3.1), we
can obtain for the linear model that

Tst
h 2
where C,=1/2a—1/2ar (h?). We can note that the
logarithmic term has the same structure, whether the sys-
tem has one or n variables. Now the statistical average of
the quantity {(Ink?2) is done with the corresponding P(h).
We present now the explicit results for the linear approxi-
mation of the examples.

(i) The Landau model for one and n variables. The
linear equation for both cases is given by #=2ar. Then
the T, is the same as (AS5), but for one variable it can be
calculated with the help of Eq. (2.8),

TL 1 <1n

:?a— >—C1 , (AS5)

TL=—21;-{1n(a2rst)—\I/(%)}—C1 : (A6)

and for the n variables we use Eq. (2.12) to obtain

T, =1 lln(azrst )— —c, . (A7)

2a

n
2

(ii) The laser model. For this model the linear determinis-
tic equation is again 7=2ar, but a=(F —k), where
r=|E|%. Therefore, the T, for the model with the pa-
rameter b =0, according to Eq. (4.10), is given by

TL=%{ln(a2rst)—\I/(1)}-—Cl .

Finally, for the laser model in the presence of the external
field E,, b0, we can obtain T, again using Eq. (4.10),

(A8)

T, = L

Z{ln(azrst)—‘l’(l)

—[E,(b%a*)+y+In(b?%a®)]}—C, , (A9)

where E(x) is the integral exponential function [13].
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